Boundary Geometric Control of Nonlinear Diffusion Systems

نویسندگان

  • Ahmed MAIDI
  • Jean Pierre CORRIOU
چکیده

The paper addresses the boundary control of a nonlinear diffusion system submitted to Neumann actuation. The control law is designed in the framework of geometric control theory using directly the nonlinear partial differential equation model without any previous reduction. First, an equivalent linear model using the Cole-Hopf transformation is obtained, then the manipulated variable is inserted in the state equation of this equivalent linear model by means of a Dirac delta function to make the boundary condition homogeneous. Based on the resulting final model, the control law is derived using the characteristic index notion and the closed loop stability is demonstrated using concepts from the powerful semigroup theory. The control law performance is evaluated through numerical simulation by considering a nonlinear heat conduction control problem. Copyright c ©2013 IFAC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed control of nonlinear diffusion systems by inputoutput linearization

This paper addresses the distributed control by input–output linearization of a nonlinear diffusion equation that describes a particular but important class of distributed parameter systems. Both manipulated and controlled variables are assumed to be distributed in space. The control law is designed using the concept of characteristic index from geometric control by using directly the PDE model...

متن کامل

Nonlinear Stability of Stationary Solutions for Surface Diffusion with Boundary Conditions

The volume preserving fourth order surface diffusion flow has constant mean curvature hypersurfaces as stationary solutions. We show nonlinear stability of certain stationary curves in the plane which meet an exterior boundary with a prescribed contact angle. Methods include semigroup theory, energy arguments, geometric analysis and variational calculus.

متن کامل

On a class of Kirchhoff type systems with nonlinear boundary condition

A class of Kirchhoff type systems with nonlinear boundary conditions considered in this paper. By using the method of Nehari manifold, it is proved that the system possesses two nontrivial nonnegative solutions if the parameters are small enough.

متن کامل

A numerical treatment of a reaction-diffusion model of spatial pattern in the embryo

In this work the mathematical model of a spatial pattern in chemical and biological systems is investigated numerically. The proposed model considered as a nonlinear reaction-diffusion equation. A computational approach based on finite difference and RBF-collocation methods is conducted to solve the equation with respect to the appropriate initial and boundary conditions. The ability and robust...

متن کامل

Existence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations

‎In this paper‎, ‎we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations‎. ‎By a priori estimates‎, ‎difference and variation techniques‎, ‎we establish the existence and uniqueness of weak solutions of this problem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013